Fundamental Reactivity Testing and Analysis of Hydrogen Storage Materials & Systems

D.L. Anton, K.S. Brinkman, J. Gray, B. Hardy Savannah River National Laboratory

Project ID #: ST 40

This presentation does not contain proprietary or confidential information

Overview

Timeline

Start: 10/1/05

End: 9/30/10

Percent complete: 30%

Budget

- **Proposed Budget: \$2M**
- Funding received in FY07
 - \$300K
- **Funding for FY08**
 - \$500K

Barriers Addressed

- D. Durability/Operability
- A. System Weight and Volume
- Q. Reproducibility of Performance
- F. Codes and Standards

Partners

- M. Fichtner, Forschungszentrum Karlsruhe, Germany
- N. Kuriyama, National Institute for Advanced Industrial Science and Technology, Japan
- R. Chahine, Université du Québec à Trois-Rivières, Canada
- D. Mosher, United Tech. Res. Ctr., USA
- D. Dedrick, Sandia NL, USA

DoE On-Board Hydrogen Storage Technical Targets

Target	2007	2010	2015
Wt % H ₂ (Useable)	4.5	6	9
Vol. Cap. (kg H ₂ /L)	0.036	0.045	.081
Cycles	500	1000	1500
Minimum rate (g/s)/kW	.02	.02	.02
Minimum/Maximum pressure (atm) [FC]	8/100	4/100	3/100
Minimum/Maximum ambient temperature (°C)	-20/50	-30/50	-40/60
Start time to full flow (s)	4	4	0.5
System fill time (min)	10	3	2.5
Safety	Meet or exceed applicable standards		

Task Plan

- Task 1: Risk Assessment
 - Assess the potential risks of using solid state hydrides
 - Develop test protocols and experimental designs to aid in characterization of hypothetical accident scenarios
 - Test six compounds in three discharge states using standardized semiquantitative test methods
- Task 2: Thermodynamics & Chemical Kinetics
 - Quantitatively assess chemical reactions of compounds with air, water & other engineering materials
- Task 3: Risk Mitigation
 - Quantitatively assess chemical reactions of compounds with potential inhibitors
 - Evaluate efficacy of inhibitors in laboratory scale tests
- Task 4: Prototype System Testing
 - Design assemble and test prototype storage systems to evaluate effectiveness of inhibitor systems.

Materials Test Plan

- All three major classes of condensed hydrogen storage materials are being studied: metal hydrides, chemical hydrides & adsorption hydrides.
- Priority of analysis is being conducted in consultation with the three Materials CoE's and DoE.

Little Known

Investigations Initiated

- 1. $2LiBH_4 + MgH_2$
- 2. NH_3BH_3
- 3. Activated Carbon
- 4. AIH_3

Some Known

Complete Analysis

- NaAlH₄ + 2%TiCl₃
- 2LiH + Mg(NH₂)₂
- Mg₂NiH₄
- LaNi₅H₆

Materials Prep Plan

- Use Particle Size
 - Fully Charged
 - Partially Discharged
 - Fully Discharged

Background: 2LiBH₄+MgH₂

$$2LiBH_4 + MgH_2 + 3m\%TiCl_3 \Rightarrow 2LiH + MgB_2 + 2H_2$$

J. Vajo, J. P. Chem. B Letters, Vol 109, pg 3719 (2005).

wt% = 11.4%

 $\Delta H = 40.5 \text{ kJ/mole H}_2$

discharge

Recharge: 100 bar

Apparatus for Pyrophoricity Test

Video Recording Device and / or IR Camera

- 1. Drop a small amount (< 1 g) of material in a containment box under ambient conditions
- 2. Observe material as it falls and for a period of < 5 min. after falling.
- 3. Check for:
 - Gas evolution
 - 2. Spontaneous ignition
- 4. Video record experiment

2LiBH₄+MgH₂ Pyrophoricity Test

Materials do not undergo reaction in air

material absorbs H₂O from air

time

No reaction in 15 minutes (5 minutes for standard test)

time

2LiBH4+MgH2 not pyrophoric

Instrumented Apparatus for Self-Heating

- Fill the 25mm³ sample holder with material
- Sample holder pre-fitted with micro thermocouples
- Heat sample to 150°C
- Observe temperature within sample spatially resolved to determine if self-heating occurs

2LiBH₄+MgH₂ Self-Heating

- Sample begins to self-heat within 30 seconds of exposure in the oven
- Maximum Temperature observed = 447°C

- Reaction initiates at sample surfaces and propagates towards the interior
- Consistent with diffusion of air/water vapor into the packed powder sample

Apparatus for Burn Rate Test

- 1. Pack a triangular prism mold 20mm x 10mm x 250mm with material
- 2. Place material on fire resistant base, with thermocouples fitted underneath at 35mm intervals
- 3. Introduce flame at one end of packed material
- 4. Observe whether flame propagation occurs
 - 1. Measure rate of propagation
 - 2. Monitor linear temperature distribution

Camera

2LiBH₄+MgH₂ Burn Rate

2LiBH₄· MgH₂ Burn Rate Measurement

- Variations in max temperature attributed to variations in packing density.
- Burn rate is very similar to NaAlH₄

Experimental Setup of Water Contact Tests

Water Immersion

- 1. Drop ~ 20 mg of material into excess of H₂O (250 ml)
- 2. Check for:
 - a) Gas evolution
 - b) Spontaneous ignition
- 3. Video record experiment

Surface Contact

- 1. Drop ~ 20 mg of material onto filter paper on the surface of an excess of H₂O (250 ml)
- 2. Check for:
 - a) Gas evolution
 - b) Spontaneous ignition
- 3. Video record experiment

Water Drop

- 1. Contact a small pile (~ 2 g) of material with a few drops of H₂O
- 2. Check for:
 - 1. Gas evolution
 - 2. Spontaneous ignition
- 3. Video record experiment

2LiBH₄·MgH₂ Water Immersion

=0 sec

time

H₂ bubble evolution t=2 min

t=7 mi

time

Material does not ignite on dropping in excess water

2LiBH₄·MgH₂ Surface Contact

time

time

2LiBH₄·MgH₂ Water Drop

time

MgH₂-Hydrophobic - LiBH₄ -Hydrophilic Material ignites when enough heat and hydrogen are generated

Standardized Tests for 2LiBH₄·MgH₂

<u>UN Test</u>	<u>Result</u>	<u>Comments</u>	
Pyrophoricity	Pass	No combustion event. Hygroscopic material absorbed H ₂ O from air.	
Self-Heat	Fail	Self-heated ~300°C within 30 sec.	
Burn Rate	Fail	Flame propagated at a burn rate of 52 mm/sec.	
Water Drop	Fail	2 H ₂ O drops required for near-instant combustion.	
Surface Contact	Fail	Restricted H ₂ O surface contact results in combustion	
Water Immersion	Fail	No combustion event recorded. Gas evolved at longer times. (5 min)	

- Material is classified as packing class 4.3 Dangerous When Wet 18
- Same packing class as pure components

Thermodynamic Assessment of Environmental Exposure

Thermodynamic analysis completed for all materials available in the data base

Gibbs Free energy of lowest energy reaction ΔG (kJ/mol) at 373 K

- Thermodynamics predict greatest energy release for oxygen reactions
- Generally, thermodynamic calculation did not predict experimentally observed products

Thermo-Chemical Analysis of Water Contact

Calorimetric signal from mixing ~ 10 mg 2LiBH₄ + MgH₂ and 1ml water at 40°C and 70°C

- More complete reaction or additional reactions occurring at 70°C.
- Investigating NMR and Raman of products to elucidate reactions.

Kinetics of Water Contact: 2LiBH₄+MgH₂

Fully Charged

Different Products at Different Temperature

Different reaction products is further evidence of differences in reaction pathway previously identified

Thermo-Chemical Analysis of Humid Air Exposure

Gas Product Analysis

Gas versus Liquid Hydrolysis/Oxidation Comparison

Heat flow during hydrolysis with 40°C humid air 20% humidity and

Water quantity:

Liquid: t=0, mol actual/mol stoichiometric=32%

Gas: t_{stoichiometric}=3.5 hours t=12 hours, mol actual/mol stoichiometric=350%

- Liquid water hydrolysis displays maximum heat flow
- Oxygen in air is only a small contributor to heat flow signal

Reactivity Comparison

Discharged material state more reactive: Charged

 $LiBH_4 + 1/2MgH_2 + 4H_2O(I) = LiOH + \frac{1}{2}Mg(OH)_2 + H_3BO_2 + 4H_2(g)$ $\Delta H = -675 \text{ kJ/ formula unit}$

Discharged

 $LiH + 1/2 MgB_2 + 4 H_2O(I) = LiOH + 1/2 Mg(OH)_2 + H_3BO_2 + 2H_2(g)$ $\Delta H = -760 kJ/formula unit$

Preliminary NH₃BH₃ Testing Initiated

1) Calorimetry

Argon gas flow with 30% RH at 40°C

Small exothermic reaction products under analysis

- **2) UN test**
 - Water drop

No reaction with addition of H_2O drops

Predictive Models

- Preliminary experiments suggest:
 - Exposure of media to humid environment leads to:
 - Exothermic reaction and H₂ generation
 - Low thermal conductivity of media causes temperature to rise
 - H₂ at surface and in pores burns if & when auto ignition temperature of 571°C is reached
 - Burning of H₂ initiates pyrolysis of media
- Correlations will be developed, in terms of non-dimensional parameters, that:
 - Predict whether H₂ ignition occurs
 - Predict time to ignition
 - Predict whether pyrolysis occurs
- Correlations will be developed on salient material properties of media and dimensions of media pile

Task 2 Plans

- Summarize results of calorimetric tests and UN tests in a DOE report for the LiBH₄ + MgH₂ material system
- Continue liquid phase and gas phase calorimetry of NH₃BH₃
- Identify amorphous reaction products (Raman, NMR)
- Assess risks based on observed thermo-chemical release

Task 3 Plan

- Identify risk mitigation strategies including contaminants and poisons which will reduce exothermic releases.
- Evaluate theoretical thermodynamics of mitigation strategies for water and air exposures initially on NH₃BH₃, 2LiBH₄+MgH₂, 2LiH+Mg(NH₂)₂, AIH₃ & NaAIH₄.
- Perform calorimetric experiments of mitigation strategies for water exposure at 0<T<50°C.
- Perform calorimetric experiments of mitigation strategies for conditioned air exposure at 0<T<100°C, 0<%RH<100%.
- Identify reaction products.
- Assess mitigation strategies effectiveness based on observed thermochemical release.

SRNL FYs '07 & '08 Work

- Coordinate IPHE team to complete experimental analysis, compile results and disseminate findings and conclusions.
- Complete standardized tests UN hazards analysis tests on NH₃BH₃, 2LiH + Mg(NH₂)₂ & AlH₃.
- Perform calorimetric experiments on environmental exposure reactions, assess reaction products and chemical kinetics as a function of T & %RH.
- Determine chemical reaction & thermal discharge rates to assess risks.

